File: //usr/lib/python3/dist-packages/docutils/utils/math/__pycache__/tex2unichar.cpython-310.pyc
o
nw#[%� � @ s^ i d d�dd�dd�dd�dd �d
d�dd
�dd�dd�dd�dd�dd�dd�dd�dd�dd�d d!�d"d#d$d%ddd!d&��Z i d'd(�d)d*�d+d,�d-d.�d/d0�d1d2�d3d4�d5d6�d7d8�d9d:�d;d<�d=d>�d?d@�dAdB�dCdD�dEdF�dGdH�i dIdJ�dKdL�dMdN�dOdP�dQdR�dSdT�dUdV�dWdX�dYdZ�d[d\�d]d^�d_d`�dad`�dbdc�ddde�dfdg�dhdi��i djdk�dldm�dndo�dpdq�drds�dtdu�dvdw�dxdy�dzd{�d|d}�d~d�d�d��d�d��d�d��d�d��d�d��d�d���i d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d���Zi d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�dÓd�dœd�dǓd�dɓd�d˓d�d͓i d�dϓd�dѓd�dӓd�dՓd�dדd�dٓd�dۓd�dݓd�dߓd�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d��i d�d�d�d�d�d��d�d��d�d��d�d��d�d��d�d���d �d��d�d��d�d��d�d��d�d ��d
�d��d�d
��d�d��d�d��i �d�d��d�d��d�d��d�d��d�d��d�d��d�d��d �d!��d"�d#��d$�d%��d&�d'��d(�d)��d*�d+��d,�d-��d.�d/��d0�d1��d2�d3���d4�d5�d6�d7�d8d��d+�d-�d/�d9d��d
�d:�d�d;�d<��Z�d=�d>�d?�d=�d@�dA�dB�dC�dD�dE�dF�dG�d@�dH�
Z�dI�dJ�dI�dK�Zi �dL�dM��dN�dO��dP�dQ��dR�dS��dT�dU��dV�dW��dX�dY��dZ�d[��d\�d]��d^�d_��d`�da��db�dc��dd�de��df�dg��dh�di��dj�dk��dl�dm��dn�do�dp�dq�dr�ds�dt�du�dv��Z�dw�dx�dw�dy�dz�d{�d|�d}�d~�d�d��d��dy�d��
Zi �d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d��i �d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d�i �dÐdē�dŐdƓ�dǐdȓ�dɐdʓ�dːd̓�d͐dΓ�dϐdϓ�dАdѓ�dҐdӓ�dԐd��d��dՓ�ddד�dؐdٓ�dڐdۓ�dܐdݓ�dސdߓ�d�d���i dd��d�d��d�d��d�d��d�d���d�d��d�d��d�d��d�d��d�d��d�d��d��d���d��d���d��d��d�d���d��d���d��d���i �d �d��d�d��d�d��d�d��d�d��d �d
��d�d��d
�dʓ�d�d��d�d��d�d��d�d��d�d���d�dʓ�d�d��d�d��d�d��i �d�d���d�d ��d!�d"��d#�d���d$�d���d%�d���d&�d'��d(�d)��d*�d���d+�d,��d-�d���d.�d/��d0�d���d1�d2��d3�d4��d5�d6��d7�d'��i �d8�d���d9�d:��d;�d<��d=�d>��d?�d@��dA�d���dB�dC��dD�dE��dF�dG��dH�dI��dJ�d���dK�dL��dM�d���dN�d���dO�dP��dQ�dR��dS�dT��i �d&�dU��dV�dW��dX�dY��dZ�d[��d\�d]��d^�d_��d`�dT��da�db��dc�dd��de�dƓ�df�dg��dh�di��dj�dk��dl�dm��dn�do��dp�dq��dr�dȓ��d
�ds�dt�du�dg�dv�dw��Z�dx�dy�dz�Z�d{�d|�d}�d~�Z i �d�d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d��i �d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d�i �dÐdē�dŐdƓ�dǐdȓ�dɐdʓ�dːd̓�d͐dΓ�dϐdГ�dѐdғ�dӐdԓ�dՐd֓�dאdؓ�dِdړ�dېdܓ�dݐdޓ�dߐd��d�d���d�d��i �d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d���d��d���d��d���d��d���d��d���d��d���d �d��d�d��d�d��i �d�d��d�d��d �d
��d�d��d
�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d ��d!�d"��d#�d���d$�d%��i �d&�d'��d(�d)��d*�d+��d,�d���d-�d���d.�d/��d0�d1��d2�d
��d3�d4��d5�d6��d7�d8��d9�d:��d;�d<��d=�d>��d?�d@��dA�dB��dC�dD��i �dE�dF��dG�dH��dI�dJ��dK�dL��dM�dN��dO�dP��dQ�d1��dR�dS��dT�dU��dV�dW��dX�dY��dZ�d[��d\�d]��d^�d_��d`�d���da�db��dc�dd��i �de�df��dg�dh��di�dj��dk�dl��dm�dn��do�dp��dq�dr��ds�dt��du�dv��dw�dx��dy�dz��d{�d|��d}�d~��d�d���d��d���d��d���d��d���i �d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���i �d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���d��d���ddÓ�dĐdœ�dƐdǓ�dȐdɓ�i �dʐd˓�d̐d͓�dΐdϓ�dАdѓ�dҐd���dӐdԓ�dՐd֓�dאdؓ�dِdړ�dېdܓ�dݐdޓ�dߐd��d�d��d�d��d�d��d�d��d�d��i �d�d��d�d��d�d��d�d��d�d��d��d���d��d���d��d���d��d���d��d���d��d ��d�d��d�d��d�d��d�d��dS�d ��d
�d��i �d�d��d
�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d�d��d �d!��d"�d#��d$�d%��d&�d'��d(�d)��d*�d+��i �d,�d-��d.�d/��d0�d1��d2�d3��d4�d5��d6�d7��d8�d9��d:�d;��d<�d��d=�d>��d?�d@��dA�dB��dC�dD��dE�dF��dG�dH��dI�dJ��dK�dL���dM�dN�d�dO�dP�dQ�d�dR�dS�dT�dU�dV��Z
�dW�dXiZ�dY�dY�dZ�d[�Z�d\S (] �acuteu ́�baru ̄�breveu ̆�checku ̌�ddddotu ⃜�dddotu ⃛�ddotu ̈�dotu ̇�graveu ̀�hatu ̂�mathringu ̊�notu ̸�
overleftarrowu ⃖�overleftrightarrowu ⃡�overlineu ̅�overrightarrowu ⃗�tildeu ̃u ̱u ⃮u ̲u ⃯)�underbar�underleftarrow� underline�underrightarrow�vec�widehat� widetilde�Bbbku 𝕜�Deltau Δ�Gammau Γ�Imu ℑ�Lambdau Λ�Omegau Ω�Phiu Φ�Piu Π�Psiu Ψ�Reu ℜ�Sigmau Σ�Thetau Θ�Upsilonu Υ�Xiu Ξ�alephu ℵ�alphau α�betau β�bethu ℶ�chiu χ�dalethu ℸ�deltau δ�digammau Ϝ�ellu ℓ�epsilonu ϵ�etau η�eth� ð�gammau γ�gimelu ℷ�hbaru ℏ�hslash�imathu ı�iotau ι�jmathu ȷ�kappau κ�lambdau λ�muu μ�nuu ν�omegau ω�phiu ϕ�piu π�psiu ψ�rhou ρ�sigmau σ�tauu τ�thetau θ�upsilonu υ�varDeltau 𝛥�varGammau 𝛤� varLambdau 𝛬�varOmegau 𝛺�varPhiu 𝛷�varPiu 𝛱�varPsiu 𝛹�varSigmau 𝛴�varThetau 𝛩�
varUpsilonu 𝛶�varXiu 𝛯�
varepsilonu ε�varkappau 𝜘�varphiu φ�varpiu ϖ�varrhou ϱ�varsigmau ς�varthetau ϑ�wpu ℘�xiu ξ�zetau ζ�Capu ⋒�Circleu ○�Cupu ⋓�LHDu ◀�RHDu ▶�amalgu ⨿�astu ∗�barwedgeu ⊼�bigtriangledownu ▽�
bigtriangleupu △�bindnasrepmau ⅋�blacklozengeu ⧫�blacktriangledownu ▾�blacktriangleleftu ◂�blacktrianglerightu ▸�blacktriangleupu ▴�boxastu ⧆�boxbaru ◫�boxboxu ⧈� boxbslashu ⧅� boxcircleu ⧇�boxdotu ⊡�boxminusu ⊟�boxplusu ⊞�boxslashu ⧄�boxtimesu ⊠�bulletu ∙�capu ∩�cdotu ⋅�circu ∘�
circledastu ⊛�circledcircu ⊚�circleddashu ⊝�cupu ∪�curlyveeu ⋎�
curlywedgeu ⋏�daggeru †�ddaggeru ‡�diamondu ⋄�div� ÷�
divideontimesu ⋇�dotplusu ∔�doublebarwedgeu ⩞�intercalu ⊺�
interleaveu ⫴�landu ∧�leftthreetimesu ⋋�lhdu ◁�loru ∨�ltimesu ⋉�mpu ∓�odotu ⊙�ominusu ⊖�oplusu ⊕�oslashu ⊘�otimesu ⊗�pm� ±�rhdu ▷�rightthreetimesu ⋌�rtimesu ⋊�setminusu ⧵�slashu ∕�
smallsetminusu ∖�smalltriangledownu ▿�smalltriangleleftu ◃�smalltrianglerightu ▹�smalltriangleupu ▵�sqcapu ⊓u ⊔u ⫽u ⋆u ⫾� ×u ⊎u ⊻u ≀)�sqcup�sslash�star�
talloblong�times�triangle�triangledown�triangleleft�
triangleright�uplus�vartriangle�vee�veebar�wedge�wru ⟆u ⌟u ⟩�}�]u ⌉u ⌋u ⟯u ⟧u ⦈u ⌝)
�Rbag�lrcorner�rangle�rbag�rbrace�rbrack�rceil�rfloor�rgroup� rrbracket�
rrparenthesis�urcornerr� u ‖�|)�Vert�vertr� �Joinu ⨝�bigcapu ⋂�bigcupu ⋃�
biginterleaveu ⫼�bigodotu ⨀�bigoplusu ⨁� bigotimesu ⨂�bigsqcupu ⨆�biguplusu ⨄�bigveeu ⋁�bigwedgeu ⋀�coprodu ∐�fatsemiu ⨟�fintu ⨏�iiiintu ⨌�iiintu ∭�iintu ∬u ∫u ∯u ∮u ∳u ∏u ⨖u ∑u ∲)�int�oiint�oint�ointctrclockwise�prod�sqint�sum�varointclockwiseu ⟅u ⟨�{�[u ⌈u ⌊u ⟮u ⟦u ⌞u ⦇u ⌜)
�Lbag�langle�lbag�lbrace�lbrack�lceil�lfloor�lgroup� llbracket�llcorner�
llparenthesis�ulcornerr� �#�$�%�&�ACu ∿�
APLcommentu ⍝�APLdownarrowboxu ⍗�APLinputu ⍞�APLinvu ⌹�APLleftarrowboxu ⍇�APLlogu ⍟�APLrightarrowboxu ⍈�
APLuparrowboxu ⍐�Ariesu ♈�CIRCLEu ●�
CheckedBoxu ☑�Diamondu ◇�Finvu Ⅎ�Gameu ⅁�Geminiu ♊�Jupiteru ♃�
LEFTCIRCLEu ◖�
LEFTcircleu ◐�Leou ♌�Librau ♎�Marsu ♂�Mercuryu ☿�Neptuneu ♆�Plutou ♇�RIGHTCIRCLEu ◗�RIGHTcircleu ◑�Saturnu ♄�Scorpiou ♏�Squareu ☐�Sunu ☉�Taurusu ♉�Uranusu ♅�Venusu ♀�XBoxu ☒�Yupu ⅄�_�angleu ∠�aquariusu ♒�aries�*�backepsilonu ϶� backprimeu ‵� backslash�\�becauseu ∵�bigstaru ★�binampersandu ⬧�blacksmileyu ☻�blacksquareu ◼�botu ⊥�boy�canceru ♋�capricornusu ♑�cdotsu ⋯�cent� ¢� centerdotu ⬝� checkmarku ✓�circlearrowleftu ↺�circlearrowrightu ↻�circledR� ®u ◎�clubsuitu ♣�
complementu ∁� dasharrowu ⇢�
dashleftarrowu ⇠�dashrightarrow�diameteru ⌀�diamondsuitu ♢�earthu ♁�existsu ∃�female�flatu ♭�forallu ∀�fourthu ⁗�frownieu ☹�gemini�girl� heartsuitu ♡�inftyu ∞�invnegu ⌐�jupiter�ldotsu …�leftmoonu ☾�leftturn�leo�libra�lnot� ¬�lozengeu ◊�male�malteseu ✠�
mathdollar�
measuredangleu ∡�mercury�mhou ℧�nablau ∇�naturalu ♮�neg�neptune�nexistsu ∄�notbackslashu ⍀�partialu ∂�piscesu ♓�pluto�pounds� £�primeu ′�quarternoteu ♩� rightmoonu ☽� rightturn�sagittariusu ♐�saturn�scorpio�secondu ″�sharpu ♯�sim�~�/�smileyu ☺� spadesuitu ♠�spddot� ¨�sphat�^�sphericalangleu ∢�sptilde�squareu ◻�sunu ☼�taurus� thereforeu ∴�thirdu ‴�topu ⊤r� u ◅r� u ▻�twonotesu ♫�uranusu ∅u ♍u ⌑� ¥)�varEarth�
varnothing�virgo�wasylozenge�
wasytherefore�yenu ⏞u ⏜)� overbrace� wideparenu √u ∛u ∜)�sqrtzsqrt[3]zsqrt[4]�Bumpequ ≎�Dotequ ≑� Downarrowu ⇓� Leftarrowu ⇐�Leftrightarrowu ⇔�
Lleftarrowu ⇚�
Longleftarrowu ⟸�Longleftrightarrowu ⟺�Longmapsfromu ⟽�
Longmapstou ⟾�Longrightarrowu ⟹�Lshu ↰�Mapsfromu ⤆�Mapstou ⤇�
Rightarrowu ⇒�Rrightarrowu ⇛�Rshu ↱�Subsetu ⋐�Supsetu ⋑�Uparrowu ⇑�Updownarrowu ⇕�VDashu ⊫�Vdashu ⊩�Vvdashu ⊪�apprgeu ≳�apprleu ≲�approxu ≈�approxequ ≊�asympu ≍�backsimu ∽� backsimequ ⋍�barinu ⋶�barleftharpoonu ⥫�barrightharpoonu ⥭�betweenu ≬�bowtieu ⋈�bumpequ ≏�circequ ≗�colonequ ≔�congu ≅�correspondsu ≙�curlyeqprecu ⋞�curlyeqsuccu ⋟�curvearrowleftu ↶�curvearrowrightu ↷�dashvu ⊣�ddotsu ⋱�dlshu ↲�dotequ ≐�doteqdot� downarrowu ↓�downdownarrowsu ⇊�downdownharpoonsu ⥥�downharpoonleftu ⇃�downharpoonrightu ⇂�downuparrowsu ⇵�downupharpoonsu ⥯�drshu ↳�eqcircu ≖�eqcolonu ≕�eqsimu ≂�
eqslantgtru ⪖�eqslantlessu ⪕�equivu ≡�
fallingdotsequ ≒�frownu ⌢�geu ≥�geq�geqqu ≧�geqslantu ⩾�getsu ←�ggu ≫�ggcurlyu ⪼�gggu ⋙�gnapproxu ⪊�gnequ ⪈�gneqqu ≩�gnsimu ⋧� gtrapproxu ⪆�gtrdotu ⋗� gtreqlessu ⋛�
gtreqqlessu ⪌�gtrlessu ≷�gtrsim�hashu ⋕�
hookleftarrowu ↩�hookrightarrowu ↪�iddotsu ⋰� impliedby�implies�inu ∈�leu ≤� leftarrow�
leftarrowtailu ↢�leftarrowtriangleu ⇽�leftbarharpoonu ⥪�leftharpoondownu ↽�
leftharpoonupu ↼�leftleftarrowsu ⇇�leftleftharpoonsu ⥢�leftrightarrowu ↔�leftrightarrowsu ⇆�leftrightarrowtriangleu ⇿�leftrightharpoonu ⥊�leftrightharpoonsu ⇋�leftrightsquigarrowu ↭� leftsliceu ⪦�leftsquigarrowu ⇜�leq�leqqu ≦�leqslantu ⩽�
lessapproxu ⪅�lessdotu ⋖� lesseqgtru ⋚�
lesseqqgtru ⪋�lessgtru ≶�lesssim� lightningu ↯�llu ≪�llcurlyu ⪻�lllu ⋘�lnapproxu ⪉�lnequ ⪇�lneqqu ≨�lnsimu ⋦�
longleftarrowu ⟵�longleftrightarrowu ⟷�longmapsfromu ⟻�
longmapstou ⟼�longrightarrowu ⟶�
looparrowleftu ↫�looparrowrightu ↬�mapsfromu ↤�mapstou ↦�midu ∣�modelsu ⊧�multimapu ⊸�
nLeftarrowu ⇍�nLeftrightarrowu ⇎�nRightarrowu ⇏�nVDashu ⊯�nVdashu ⊮�ncongu ≇�neu ≠�nearrowu ↗�neq�ngequ ≱�ngtru ≯�niu ∋�
nleftarrowu ↚�nleftrightarrowu ↮�nlequ ≰�nlessu ≮�nmidu ∤�notasympu ≭�notinu ∉�notowneru ∌�notslashu ⌿� nparallelu ∦�nprecu ⊀�nprecequ ⋠�nrightarrowu ↛�nsimu ≁� nsubsetequ ⊈�nsuccu ⊁�nsuccequ ⋡� nsupsetequ ⊉�
ntriangleleftu ⋪�ntriangleleftequ ⋬�ntrianglerightu ⋫�ntrianglerightequ ⋭�nvDashu ⊭�nvdashu ⊬�nwarrowu ↖�owns�parallelu ∥�perpu ⟂� pitchforku ⋔�precu ≺�
precapproxu ⪷�preccurlyequ ≼�precequ ⪯�precnapproxu ⪹�precnsimu ⋨�precsimu ≾�proptou ∝�restrictionu ↾�
rightarrowu →�rightarrowtailu ↣�rightarrowtriangleu ⇾�rightbarharpoonu ⥬�rightharpoondownu ⇁�rightharpoonupu ⇀�rightleftarrowsu ⇄�rightleftharpoonu ⥋�rightleftharpoonsu ⇌�rightrightarrowsu ⇉�rightrightharpoonsu ⥤�
rightsliceu ⪧�rightsquigarrowu ⇝�risingdotsequ ≓�searrowu ↘u ∼�simequ ≃�
smallfrown�
smallsmileu ⌣�smile�sqsubsetu ⊏�
sqsubsetequ ⊑�sqsupsetu ⊐�
sqsupsetequ ⊒�subsetu ⊂�subsetequ ⊆� subseteqqu ⫅� subsetnequ ⊊�
subsetneqqu ⫋�succu ≻�
succapproxu ⪸�succcurlyequ ≽�succequ ⪰�succnapproxu ⪺�succnsimu ⋩�succsimu ≿�supsetu ⊃�supsetequ ⊇� supseteqqu ⫆� supsetnequ ⊋�
supsetneqqu ⫌�swarrowu ↙�to�triangleleftequ ⊴� trianglequ ≜�trianglerightequ ⊵�twoheadleftarrowu ↞�twoheadrightarrowu ↠�uparrowu ↑�updownarrowu ↕�updownarrowsu ⇅u ⥮u ↿u ⇈u ⥣u ⊨u ⊲u ⊳u ⊢u ⋮)�updownharpoons�
upharpoonleft�upharpoonright�
upuparrows�upupharpoons�vDash� varpropto�vartriangleleft�vartriangleright�vdash�vdots�
underbraceu ⏟u u )�:�medspace�quadN)
�
mathaccent� mathalpha�mathbin� mathclose� mathfence�mathop�mathopen�mathord�mathover�mathradical�mathrel� mathunder�space� r� r� �A/usr/lib/python3/dist-packages/docutils/utils/math/tex2unichar.py�<module> s6 �������� �
���
�������������� �
���
������������������� �!�"�#�$�%�&�'�(�)�*�+�,�-�.�/�0�1�2�3�4�5�6�7�8�9�:�;�<�=�>�?�@�A�B�C�E�������� �
���
������������������� �!�"�#�$�%�&�'�(�)�*�+�,�-�.�/�0�1�2�3�4�5�6�7�8�9�:�;�<�=�>�?�@�A�B�C�D�E
�V���������� �
���
�����
���������� �
���
������������������� �!�"�#�$�%�&�'�(�)�*�+�,�-�.�/�0�1�2�3�4�5�6�7�8�9�:�;�<�=�>�?�@�A�B�C�D�E�F�G�H�I�J�K�L�M�N�O�P�Q�R�S�T�U�V�W�X�Y�Z�[�\�]�^�_�`�a�b�c�d�e�f�g�h�i�j�k�l�m�n�o�p�q�r�s�t�u�v�w�x�y�z�{�|�}�~�� �� �� �� �� �� �� �� �� ��
�
� ���������� �
���
������������������� �!�"�#�$�%�&�'�(�)�*�+�,�-�.�/�0�1�2�3�4�5�6�7�8�9�:�;�<�=�>�?�@�A�B�C�D�E�F�G�H�I�J�K�L�M�N�O�P�Q�R�S�T�U�V�W�X�Y�Z�[�\�]�^�_�`�a�b�c�d�e�f�g�h�i�j�k�l�m�n�o�p�q�r�s�t�u�v�w�x�y�z�{�|�}�~�� �� �� �� �� �� �� �� �� ��
�� �� ��
�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ! �� "